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Transport and diffusion of particles on modulated surfaces is a nonequilibrium problem which is receiving
a great deal of attention due to its technological applications, but analytical calculations are scarce. In earlier
work, we developed a perturbative approach to begin to provide an analytic platform for predictions about
particle trajectories over such surfaces. In some temperature and forcing regimes, we successfully reproduced
results for average particle velocities obtained from numerical simulations. In this paper, we extend the
perturbation theory to the calculation of higher moments, in particular the diffusion tensor and the skewness.
Numerical simulations are used to check the domain of validity of the perturbative approach.
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I. INTRODUCTION

The response of particles in a thermal environment driven
by external forces across modulated potential surfaces con-
tinues to pose interesting questions in theory, experiment,
and simulations even though in many ways it may be con-
sidered a well-seasoned problem [1-18]. The motion of clas-
sical and of quantum particles over such surfaces exhibits a
rich variety of behaviors that serves as a probe of surface
structure and of the interplay of surface potentials, thermal
motions, and directed forces that can be electrical, magnetic,
or even of hydrodynamic origin. The most recent experimen-
tal interest arises because of the technological capabilities to
use this response in the sorting or mixing of colloidal par-
ticles. Sorting of particles driven across modulated surfaces
is a nondestructive technology that has successfully been
implemented for separation of colloidal mixtures by size or
by other particle characteristics. Not surprisingly, analytic
results on this problem are limited. Our own previous work
provides some of these results specifically in the context of
particle sorting. In [18] we introduced a systematic perturba-
tion procedure for characterizing the motion of particles over
modulated surfaces when the external force driving the par-
ticle motion is large and/or the temperature of the medium is
high. In these limits we were able to calculate the average
velocity of the particles in both periodic and random poten-
tials. In the context of particle sorting, we were particularly
interested in extracting the direction of the average velocity
relative to the direction of the external force and its depen-
dence on particle parameters such as size. The agreement
with numerical simulation results showed that our procedure
has predictive value in the appropriate force and temperature
regimes.

As we pointed out in our earlier work, the average veloc-
ity is but one feature of the distribution of particle positions
and velocities, and our perturbation theory can be applied to
the calculation of other interesting moments. One particular
such moment is the diffusion tensor
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Here x; is the i component of the displacement of particles
from their initial positions and the brackets denote an en-
semble average over thermal fluctuations. The diffusion ten-
sor is thus a second moment of the particle displacements. In
this paper we pursue the calculation of this tensor as well as
that of the third moment (skewness) of the particle displace-
ments based on our perturbative high-force high-temperature
approach.

As in [18], we consider the motion of identical noninter-
acting particles moving on a surface described by a two-
dimensional potential V(x,y) which may be periodic or ran-
dom. We implement the ubiquitous overdamped limit, so that
the equations of motion for the components of the particle
displacement are given by

J 7
d==—Vlxy) + Fcos 6+ 3\2T6(0),
X

J
y==—V(ey)+ Fsin 6+ 2TE,(1). )
y
In these Langevin equations, the dots denote time deriva-
tives, 7 is the dimensionless temperature, and the thermal
fluctuation terms &(¢) are Gaussian and & correlated

(&) = 8,0t —1"). (3)
The constant external force vector is
F=F cos 6i+ F sin 6j. (4)

We will also consider the corresponding one-dimensional
(ID) case where particles move on a line described by a
potential V(x) and the particle displacement is described by
the single coordinate x.

It is useful to provide a brief summary of our previous
work based on this model as well as a generalization of it
that includes inertial forces (underdamped regime). In [13],
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which was purely numerical, we analyzed the magnitude as
well as direction of the average velocity vector as a function
of particle size (as captured in the parameters of the poten-
tial), temperature, and magnitude and direction of the exter-
nal force in the overdamped case. Our simple model repro-
duced the rich behavior noted in colloidal experiments that
had been interpreted via considerably more complicated
models. In [14—17] we studied numerically the transport and
diffusion properties in different lattice geometries in both
asymmetric and symmetric periodic surface potentials. We
also studied the effects of friction. In this latter analysis we
included situations where the friction is sufficiently low to
highlight the role of inertial effects. Finally, in [18] we pre-
sented our first attempts at developing an analytic approach
to the overdamped problem. In particular, we developed an
approximation method to obtain analytic formulas for the
average velocity of particles and demonstrated the validity of
the approximation at high temperatures 7 and/or strong forc-
ing F. We found good agreement with numerical simulations
in the appropriate regimes and extended the regime of agree-
ment through an adjustment to the simple perturbation ex-
pansion. In that work we considered random as well as pe-
riodic potentials and found particularly interesting general
conditions that dictate whether or not a modulated surface
lends itself to particle sorting.

In the work presented here we build on those previous
results, with the goal of finding analytic results for the sec-
ond and third moments of the distribution of particle dis-
placements using the perturbative approximation scheme
first introduced in [18]. The second moments are introduced
via the diffusion tensor D;; defined in Eq. (1). The so-called
parallel and perpendicular diffusion coefficients (as in [15],
for example) are calculated from the tensor by introducing a
unit vector u and forming the scalar

2
u-D'u=Eu,-D~u< (5)

=yt
ij=1

When u is parallel to the external force F, this scalar is the
parallel diffusion coefficient D); when u is perpendicular to
F, we obtain the perpendicular diffusion coefficient D . We
note that many interesting properties of the diffusion coeffi-
cients were obtained numerically in [14,15]. The numerical
simulations of [14,15] include a finite friction coefficient,
unlike the overdamped case considered here; however, we
expect some applicability of overdamped results when the
friction coefficient is large. One of our motivations for this
work is the large disparity between the values of D and D |
at temperature 7=0.2 as shown in Fig. 3 of [15]. We show
here that the difference between the parallel and perpendicu-
lar diffusion coefficients depends on a number of factors,
including the angle 6 of the external force and the symmetry
of the periodic potential, as well as 7 and F.

In Sec. II we give the (first-order) approximation for the
diffusion tensor. Using an exact result for the one-
dimensional periodic diffusion coefficient, we examine the
validity of our approximation at various temperatures and
forcing strengths. In the explored cases, we compare our ana-
lytical results to numerical simulations. Concentrating on the
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role of force and temperature, we proceed to find D and D |
for periodic two-dimensional potentials as used in [15]. We
also study the diffusion coefficient for one-dimensional ran-
dom potentials. In Sec. III we demonstrate the capability of
the approximation scheme to examine higher-order moments
of the distribution of particle displacements [19]. In particu-
lar, we give a formula for the third moment and derive the
skewness for particles moving in a one-dimensional periodic
potential. Comments and conclusions are indicated in Sec.
IV and technical details are in the Appendix.

II. DIFFUSION COEFFICIENTS

The diffusion tensor D;; is calculated using the first-order
approximation developed in [18] as

3(k-F)?-T%

T ~
D, =T6+ —— | dkk*Q(K)kik/————————75,
t lj+ f Q( ) l J[(k_F)2+T2k4]2

(277)251
(6)

where d stands for dimension. As in Sec. III of [18], this
first-order approximation can be applied to motion in either
periodic potentials or random potentials by an appropriate

choice of the kernel O(k). For periodic potentials, 0(K) is

defined in terms of the Fourier transform V of the potential
V(x) as

O(k) = V(K) V(- k). (7)

For random potentials (and after disorder-averaging), the ap-
propriate kernel in formula (6) is

0(k) = 2m)E(K). (8)

Here E(K) is the energy spectrum of the potential, defined as
the Fourier transform of the (disorder-averaged) correlation
function of the potential (see Sec. IIIB of [18]). The deriva-
tion of formula (6) is nontrivial. It is detailed in the Appen-
dix for the random case and is easily carried out in similar
fashion for the periodic case.

A. One-dimensional periodic potential

In one dimension, the tensor D;; given in Eq. (6) reduces
to the scalar diffusion coefficient

D=T] 14— f kIO (k) Sl 9)
= + — —_— (.

2m)? Q [F*+ T
Here we concentrate on the periodic case with potential
V(x)=cos(27x), so the equation of motion is

% =F+ 27 sin(2mx) + \,’/Z_Tg(t) (10)
(note the change of notation with respect to Ref. [18] where
U instead of F was used). In the absence of the potential, the
diffusion coefficient would simply be D=7, so that it is con-
venient to highlight the deviations from this behavior by
writing the diffusion coefficient from Eq. (9) for this poten-
tial in terms of the ratio D/ 7,
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FIG. 1. Approximate (solid), exact (dotted), and numerical

(symbols) 1D diffusion results for D/ 7T as function of external force
F at temperatures (a) 7=0.2, (b) 7=0.5, and (c) 7=1.0.
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In this particular instance, it is not necessary to use this
approximate result for the diffusion coefficient because an
exact result is available [20]. Nevertheless, we exhibit the
comparison of this first-order approximation to the exact re-
sult given by Eq. (22) of [20] and to numerical simulation
results to set a baseline for further comparisons. In Fig. 1, we
compare the exact values of D/7 (dotted line) versus the
forcing F to the first-order approximation (solid line) given
by Eq. (11) at the three temperatures 7=0.2, 0.5, and 1.0.
Consistent with our results for the mean velocity in [18],
where we showed that the first-order approximation was use-
ful for high temperatures and strong forcing, we find the
same regimes of agreement here. Accordingly, we note in (a)
and (b) of Fig. 1 the unphysically negative values of the
approximate diffusion at low F values when the temperature
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FIG. 2. Diffusion coefficient D/7 as a function of force F for a
random one-dimensional potential with Gaussian energy spectrum.
Parameters: £=0.188, y=0.15, and temperature 7=1.0. Analytic
prediction (line) and numerical simulations (points). Inset: Potential
correlation for a periodic case (solid line) and a Gaussian random
one (dashed line).

is low. At temperature 7=1.0, the agreement between the
approximation and the exact result is good for all values of
the forcing: this motivates our concentration on the case 7
=1.0 in most of the examples to follow. Note also that in all
cases, the approximate formula gives good predictions when
the forcing F is sufficiently large.

B. One-dimensional random potential

In the case of a random potential with Gaussian spatial
correlations, the energy spectrum reads

E(k) = ge 72, (12)

as in Sec. V of [18]. Here vy is the correlation length. The
resulting diffusion constant is

D
7 m{ BRI 427 4 7T (T
F
+2F2y2)erfc(77)}, (13)
V

which is plotted in Fig. 2 for 7=1 and compared to the
numerical results obtained by simulating the equation of mo-
tion for a random potential with spectrum (12). The results
are qualitatively very similar to those for the periodic case in
Fig. 1 since the correlation functions are comparable in the
two cases (as shown in the inset of Fig. 2) and are in good
agreement with the numerical ones.

C. Two-dimensional periodic potential

We consider motion on a two-dimensional surface with
periodic potential given by the Fourier series

M M

V(x) = E > Apm cos(2'n'nx)cos(2'n'm%). (14)

n=0 m=0

Note that this is a slight generalization of the potential used
in [18] because the parameter \ allows the periods in the x
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and y directions to be different. We use A= \s"2 below to com-
pare to the diffusion on the body-centered-cubic surface
studied numerically in [15]. The effect of such a periodic
potential on the diffusion in the direction of the unit vector u
is given from the approximation (6) as

u-D-u 772 uu
=1+—> > aﬁmd,,dm(n2 + ) (nu, + ﬁuy)zA+
T 2 n=0 m=0
+ (nu, — rTmy)zA_]. (15)

We have used the abbreviations

3F%(n cos 6 = 7 sin ) — 47T *(n” + m2)?

A+ =
~ [47T2(n? + m%)? + F*(n cos 6 = i sin 6)*]

(16)

and, for convenience, we have written 7 in the sum term to
stand for m/\. For the parallel diffusion coefficient D), the
unit vector u has components u,=cos 6, u,=sin ¢, for the
perpendicular diffusion coefficient D |, the components are

u,=—sin 0 and u,=cos 6. The factors d, are defined as in
[18]

2 ifn=0
d,=1+ 6, = ) (17)
1 if n>0.
As an example for implementation, we take the potential
with a;;=1 and all other a,,, set to zero

Vix,y) = cos(277x)cos<277§> , (18)

with A=12 [15]. We concentrate first on the high-
temperature case 7=1.0, motivated by the good performance
of the one-dimensional approximation at this temperature.
Figure 3 shows D,/ 7 (solid line) and D, /7 (dashed line) as
a function of the forcing magnitude F. Recall that the direc-
tion of the forcing vector is determined by the angle 6 [cf.
Eq. (4)] and so we examine the effect of the angle 6 by
taking #=0 in Fig. 3(a), #=tan"'\2 (along the diagonal of
the potential) in Fig. 3(b), and #=7/2 in Fig. 3(c). We note
that in [15] the forcing vector is directed along the diagonal
of the potential and that is the case of Fig. 3(b), where we
remark two significant observations: the parallel diffusion
exceeds the perpendicular and it shows a maximum around
F=10.

The first observation depends on both the angle 6 and the
magnitude F of the forcing vector: note from Fig. 3(c) that
when the forcing is directed in the y direction, D exceeds
D, when F is greater than approximately 8. In order to illus-
trate this effect in more detail, Fig. 4 shows the dependence
of the parallel and perpendicular diffusion coefficients on the
angle 0 of the forcing vector at temperature 7=1.0 and fixed
forcing magnitude F'=10.

The figure demonstrates that D | is maximum along the x
and y axes and minimum along the diagonal, while D, does
not exhibit significant variations as a function of forcing
angle. Figure 4 also illustrates that this dependence is sym-
metric around 6=7/2.
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FIG. 3. Diffusion coefficients D/ 7 (solid and open) and D, /T
(dashed and filled) as functions of F, at temperature 7=1.0, and
with the forcing vector at angles (a) #=0, (b) f=tan™'y2, and (c)
f0=1/2. Lines are results using our analytical approximation and
points are numerical simulation results.

The second observation in Fig. 3(b), namely, the maxi-
mum in Dy, can be understood if one realizes that diffusion is
in some sense a measure of the variation of the average ve-
locity with force magnitude F. In fact, for free Brownian
motion there is an exact relation between the two, which in
one dimension reads [21]

)
D =k,T P (19)

The value of F' for which D, is a maximum in the presence of
a periodic potential corresponds to the threshold between the
locked regime, where forces are so low that particles hardly
move, and the transport regime, where the magnitude of the
force is sufficiently high for particles to essentially ignore the
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FIG. 4. Diffusion coefficients D/ 7 (solid and open) and D, /T
(dashed and filled) as functions of angle @ at temperature 7=1.0 and
forcing magnitude F=10. Lines are approximate analytic results
and points are numerical simulation results.

potential and simply follow the drift, thus acquiring the
asymptotic average velocity (v)=F.

We noted above that Fig. 3(b) bears a qualitative resem-
blance to Fig. 3 of [15] in that the parallel diffusion is larger
than the perpendicular diffusion when the forcing vector is
directed along the diagonal. The chief difference between
Fig. 3(b) and the simulations in [15] (aside from the finite
friction coefficient in the latter) is that the temperature in
those simulations was 7=0.2, whereas here we use the
higher temperature 7=1.0 to give improved validity to our
approximation. Figure 5 shows the approximation results at
the lower temperature 7=0.2. The forcing angle lies along
the diagonal, #=tan"'\2. Note that D, exhibits a range of
unphysical negative values for low F' values, while D, is
negative even at high values of F. This latter result is rather
surprising, as we would naively have expected the quality of
the approximation to improve as F increases. To explain this,
we carefully examine the formula (15) for the potential (18)
in the case where the forcing vector points along the diago-
nal of the potential, i.e., f=tan~! \. It can be shown that in
this case, D may be written as

FIG. 5. Diffusion coefficients D/ 7 (solid and open) and D, /T
(dashed and filled) as functions of forcing magnitude F at tempera-
ture 7=0.2 and angle f=tan"'\2. Lines are analytic results and
points are numerical results.
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FIG. 6. Diffusion coefficients D;/7 (solid and open) and D, /T
(dashed and filled) as functions of angle @ at temperature 7=0.2 and
forcing magnitude F'=10. Lines are approximate analytic results
and points are numerical results.

Dy_,, N ( (20)

. G 2NF )
T (1+\?)? ’

(1 + )\2)3/2

where the function G(U) is defined in terms of the one-
dimensional diffusion constant of Eq. (11) as
D(U)

GU)=——~1.

T (21)

Similarly, the perpendicular diffusion coefficient may be re-
lated to the one-dimensional periodic case by
D, 1(1-)\??2 ( 2N’F > 1

S ~G(0).
7= iao A\ ) 7300

(22)

The final term on the right-hand side of this equation in-
volves evaluating the approximate one-dimensional diffusion
constant when the forcing magnitude F is zero. As Fig. 1(a)
demonstrates, as F approaches zero, the one-dimensional dif-
fusion approximation has large negative values when the
temperature is low. For instance, G(0)=-12.5 when 7=0.2.
The effect of this G(0) term on D is therefore to cause the
low-temperature values of the approximation to be in error
even when the forcing magnitude F' is large. We therefore
cannot make accurate analytic predictions for the perpen-
dicular diffusion coefficient when the temperature is low, at
least when the forcing direction is along the diagonal of the
potential. Figure 6 shows the diffusion coefficients at tem-
perature 7=0.2 and F=10 as functions of the angle 6 of the
forcing vector. The case studied above corresponds to 6
=tan‘1\5=0.955, a direction in which D, is negative. As
may be seen from the numerical results in Fig. 6, this un-
physical prediction is an artifact of the theory (which may be
ameliorated or removed at higher order).

III. THIRD MOMENT AND SKEWNESS

The diffusion tensor is a measure of the second moment
of the distribution of particle displacements. The techniques
developed for the approximation of the second moment are
generalizable to the study of the third and higher moments of
the distribution, thus promising some insight into the non-
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0 5 10 15 20

FIG. 7. The third moment coefficient S as a function of F for the
one-dimensional periodic case at temperature 7=1.0. Inset: time
evolution of the third moment of the displacement for different
forces (a) F=1 (black) and F=5 (gray), (b) F=8, and (c) F=10.

Gaussian nature of the probability distribution. As a first step
in this direction, we focus on the one-dimensional periodic
potential of Sec. I A and calculate the first-order approxima-
tion to the third moment of the displacement distribution
((x=(x))). We find that after a sufficiently long time, this
quantity grows linearly with time,

((x=(x))*) ~ St
and the growth rate S is given by

[F+4mT ]

as — o, (23)

Figure 7 shows the coefficient S as a function of forcing
magnitude F at temperature 7=1.0; note its negative values
when F is large. While exact results are known for the first
two moments of the displacement distribution in the one-
dimensional case [20], we are not aware of any exact (or
even numerical) results for the third moment.

The fact that the third moment is nonzero means that the
particle distribution is not Gaussian. A dimensionless mea-
sure of the deviation from Gaussianity is given by the skew-
ness

<(X - <X>)3> - S t_]/2
(k=»?  (2D)*"?

Our approximations thus predict that the skewness of the
particle displacements distribution reverts to the Gaussian
value of zero at sufficiently long times, but does so as 1'%,
As follows from Eq. (24) and is illustrated in the inset of Fig.
7, the constant of proportionality S is negative for large F but
becomes positive for smaller F. These predictions are tested
via numerical simulations in Fig. 7.

as t— o0, (25)

IV. COMMENTS AND CONCLUSIONS

In this paper we have continued our efforts to characterize
the motion of particles over modulated surfaces driven by an
external force or flow field. Our work is based on a system-
atic perturbation procedure introduced in [18], where we fo-
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cused on calculating the direction of the average velocity
relative to the direction of the external force and its depen-
dence on particle parameters such as size. Here we have
explored the diffusion tensor that measures the width of the
distribution and the skewness that is a measure of the devia-
tion of the distribution from a Gaussian. In particular, we
have calculated the diffusion constant for one-dimensional
random potentials as well as the two-dimensional diffusion
coefficients Dy and D, for a periodic potential and have
compared our results to those obtained from numerical simu-
lations. We have also calculated the skewness for a one-
dimensional periodic potential and show that it eventually
vanishes for large F values, thus indicating that the
asymptotic distribution is Gaussian. However, the approach
to zero is extremely stochastic, thus making numerical veri-
fication difficult.

In our earlier contribution we found that the theory
worked well for the calculation of the average particle veloc-
ity when the external force driving the particle motion is
large and/or the temperature of the medium is high. This is
reasonable in view of the fact that the perturbation is carried
out around the particle flow across a surface without a po-
tential (flat surface). The opposite limit of low temperature
and weak forcing corresponds to the Kramers “barrier-
crossing” regime for which our theory is not appropriate. It is
not surprising that here we again find that the first-order ap-
proximation to the higher moments works well at high tem-
peratures and large forcing F, but worse results are found
when both F and 7 are low. The problems of the theory are
more pronounced for the higher moments. In fact, we find
unphysical results for D, at low temperatures even when F
is high and have traced this to an underlying relation be-
tween D | and the diffusion coefficient in a one-dimensional
system at zero forcing.

A number of continuing directions for this work are envi-
sioned. The application of the result in Eq. (6) to random
two-dimensional potentials is straightforward and may pro-
vide interesting insights into the symmetry requirements for
particle sorting. Not so straightforward algebraically but
clearly desirable would be to develop higher-order approxi-
mations as was done in [18].
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APPENDIX

In this appendix we develop the approximate expression
Eq. (6) for the diffusion tensor following the systematic ap-
proximation scheme introduced in [18]. The diffusion tensor
as defined by Eq. (1) involves the calculation of some aver-
ages. We will do it by finding the coefficients in the long-
time asymptotic forms
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(xpx;) ~ airt +aft+o(t) as t— oo, (A1)

<x,~)~b’it+b6+o(l) as t— o, (A2)
We will show later that the combination a’ —b' b/ that would
lead to a quadratic time contribution of the moments (and
hence to a ballistic contribution to the motion) is in fact zero,

so that

D;=—~[dl -

(A3)

To calculate the coefficients in Egs. (A1) and (A2), we
will need the concentration of particles c(x, ) that obeys the
Fokker-Planck equation, Eq. (5) in Ref. [18]. In that work, an
approximate solution to this equation was developed by con-
sidering Laplace and Fourier transforms of ¢(x,?) in time and
space, respectively. The first-order solution, expression
(A10) in [18], can be written in d dimensions as

c(k,s)=Py(k) - Wﬂ(k) f dpk - i(p)Py(k - p)

[(2‘ ’)d] P4 [ dpdak-tp)p.k-p)
X((k=p) - 6(q)P,(k—p -q). (A%)

where P(k) and d(p) are defined in [18]. Averaging over
disorder and noting that

(W) =0,

(4(p)ii;()) = pip;8(p + @) (2m)E(p), (A5)

we obtain

(c(k,s)) = Py(k) - f dpPi(k)(k - p)[p - (k- p)]

1
2m)?
XE(p)P,(k - p). (A6)

The thermal average of the particle position can be deter-
mined from this concentration via the relation

W=cion=i | .

A7
x| (A7)

where the moment theorem of the Fourier transform has been
used. Upon differentiating Eq. (A4), we get
E(p)pp*

— 1 i
<xf>=§lFf+(zw)"J P T iP~F]' Y

In order to find the long-time behavior, we expand the inte-
grand for small s and then perform the inverse Laplace trans-
form, which leads to one of the required asymptotic forms
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. 2
e e

. 2
o )dJ dpE(p)(p—ppT)ﬁO(l)

=blt+b+o(l) as t— o0 (A9)

To find the coefficients a; and a,, we calculate the second
moment from the relation

- >e
() == (A10)
which after some calculation yields
26;;T 2FF; 2 .
<xixj'>= szj + 3 L4 (Zw)df dpE(p)p;
J
X [P (k= p) - pPy(k=p)lo- (A1D)

J

The derivative in the integrand can be split into three terms,

J
E[Pf(k)(k -p) PPk —p)llxo=T + T>+ T3,
J

(A12)
with
*Py(-p).
/
T,=P(0)p,P(-p).
T;= (A13)
which we consider separately.
The first term can be written as
1({-iF; 1
T, =2— ’) -p? Al4
! s( 2 ( p)s+p2T—ip-F ( )

and gives a contribution to Eq. (A1) as r— o of

S| 2 f . P°F;
t [ (27T)d dpE(p)pipz,]-_ ip-F
2i . 2p°F;
+ t{— @f dpE(p)pi(pripT)z} +o0(1).

The second term is

et
T s+p*T-ip-F

and gives a contribution to Eq. (A1) as r— o of

f{ (2i)df dpE (p)—’p;F] +o(1).

(A15)

The final term is

021123-7
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T,=5——r—+
3T 2 (s+p*T—ip - F)?

(A16)

whose contribution to Eq. (A1) as r— o is

2 p;T+iF;
t Wf E(p)p* Pz—( T—ipF) +o(1).

Combining all the terms and performing the inverse
Laplace transform, we obtain the required asymptotic form

2
(x,-xj>=t2[FiFj+ (2711-)‘1] d

E(p)pp*F; }

ppzT— ip-F
2i 2E(p)pp°F;
+1t| 26,7
[ ) (pzT— ip- F)2

E(p)pp;
*T-ip-F

2p/T+iF;
((p /Tpi +lF))2:| +0(t)

2 jd
Temi) Pp

2
(2 v f dpE(p)p*p;

PHYSICAL REVIEW E 80, 021123 (2009)

=72a +1d + o(1). (A17)

Neglecting terms of order (JE:?)2 (since they correspond to the
next order in the perturbation expansion), we get from Egs.
(A9) and (A17)

- by} =0, (A18)
as we wanted to prove. On the other hand, the linear term in

Eq. (A17) combined with Eq. (A9) yields

— bip) — bipl =258,T+ G f dpE(p)

XPin(PZT— ip-F)- ZPiPﬂ??Z
(p*T-ip-F)’

(A19)

Setting D;; to be half of this as per Eq. (A3), we arrive at the
final expresswn

T A 2Pin[3(P -F)?-T7%p"]
7{5 ‘e )J PER LT B

(A20)
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